Approximation capability of interpolation neural networks

نویسندگان

  • Feilong Cao
  • Shaobo Lin
  • Zongben Xu
چکیده

It is well-known that single hidden layer feed-forward neural networks (SLFNs) with at most n hidden neurons can learn n distinct samples with zero error, and the weights connecting the input neurons and the hidden neurons and the hidden node thresholds can be chosen randomly. Namely, for n distinct samples, there exist SLFNs with n hidden neurons that interpolate them. These networks are called exact or integrable functions) not all exact interpolation networks have good approximation effect. This paper, by using a functional approach, rigorously proves that for given distinct samples there exists an SLFN which not only exactly interpolates samples but also near best approximates the target function. Crown Copyright & 2010 Published by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the performances of neural networks specification, the Translog and the Fourier flexible forms when different production technologies are used

This paper investigates the performances of artificial neural networks approximation, the Translog and the Fourier flexible functional forms for the cost function, when different production technologies are used. Using simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and in terms of the corresponding input elasticities of substitution esti...

متن کامل

Artificial neural networks: applications in pain physiology

Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...

متن کامل

Artificial neural networks: applications in pain physiology

Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...

متن کامل

Modified Functional Link Artificial Neural Network Ashok

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated ...

متن کامل

Modified Functional Link Artificial Neural Network

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2010